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It is not too much of an overstatement, I think, to suggest that systems 
theory has not lived up to the great promise it has long been supposed to 
hold for the social sciences. Considering the magnitude of the claims, of 
course, disappointment was probably inevitable. Systems theory has been 
hailed by some as a way of unifying the methodology of all sciences. Others 
have intimated that this approach would finally endow the social sciences 
with that natural-science-like rigor and precision those disciplines allegedly 
lack. And others-more modestly-have looked to systems theory as a way 
of combatting the fragmentation and specialization of the sciences. 

But systems theory has failed-at least so far-in its various attempts to 
bring all the disparate parts of inquiry under the sway of its organizing force. 
In fact, it is fairer to say that systems theory has itself succumbed to the 
diversity and complexity of modern scientific inquiry. Defining what we 
mean by systems theory or the systems approach is virtually impossible 
outside the context of a particular discipline, and we might almost say that 
there are as many versions of systems theory as there are would-be systems 
theorists. 

In trying to be all-encompassing, systems theory has become unsys- 
tematic; and in trying to become systematic, it has become narrowly special- 
ized. On the one hand, the attempt to describe at a broad level the system- 
theoretic approach to this or that inevitably ends up sounding like a Sears 
Roebuck catalog of vaguely connected concepts, models, and definitions. 
On the other hand, mathematical system theory1-the most rigorous and 
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Systems Methodology and Information Research,” a supplement to the Journal of the American 
Society for Information Science, vol. 33 (November 1982), pp. 395-399. 
1See Hassan Mortazavian’s contribution to this volume. 
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tightly knit version of the systems approach-has coagulated out of the 
more general body of systems ideas to become a well-circumscribed mathe- 
matical specialty, even if one with certain imperialist pretensions. 

I say this largely by way of apology-for I do intend in this paper to 
provide a perspective on systems theory. But because systems theory is, in 
fact, so multifarious, my portrayal of it will necessarily be selective, picking 
out those pieces that I find useful and letting the rest alone. This seems to me 
the only sensible compromise between the encyclopedic and the axiomatic. 

My general concern will be with systems theory’s relation to the social 
sciences, especially economics. More particularly, though, I will be con- 
cerned with the notions of knowledge and information and the ways in which 
systems theory can help illuminate those concepts. Indeed, I am hopeful that 
this essay might prove a useful preface to some research I am now beginning 
on the connection between the information sciences, broadly construed, and 
economic theory. 

WHOLES AND PARTS  

Perhaps the principal reason systems theory has failed to revolutionize 
scientific methodology is that at the broadest and most general level, it has 
nothing particularly revolutionary to offer. 

At its most philosophical, systems theory is a confrontation with the age- 
old problem of the whole and the parts.  Systems theorists discovered-or, 
rather, rediscovered-complexity . They saw the approach of the physical 
sciences, which is supposed to be analytic or reductionistic, as applicable 
only to phenomena of “organized simplicity.” In dealing with the increas- 
ingly prevalent problems of “organized complexity,” they argued, we can- 
not understand the parts in isolation from the whole. [Weaver, 1948.] Thus, 
we need to study the total system, to see the big picture. These are not new 
ideas, of course. In fact, it is striking the extent to which modern systems 
theorists-notably proponents of so-called general systems theory-have 
tended to retrace a lot of old footsteps in the long-standing debate over the 
doctrine of methodological holism. [D. C. Phillips, 1976, esp. pp. 46-67.] 

Notwithstanding the holist rhetoric of most systems theorists, however, 
systems theory is not at all methodological holism in any strong sense. And 
at its best, systems theory is, in fact, a form of intelligent methodological 
individualism. 

Since this is a somewhat unconventional thing to say, and since the indi- 
vidualism/holism debate is so frequently misunderstood, perhaps a brief 
digression is in order. 

The conventional wisdom runs something like this. There is a doctrine in 
the social sciences called methodological individualism. It is a form of the 
analytic or reductionist method, and it therefore holds that knowing the 
properties of the parts-the individuals in society-is fully sufficient for 
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grasping all there is to know about the whole-society. In other words, the 
properties of the whole can be deduced from the properties of the parts; or to 
put it in more familiar (and more naive) terms, the whole is just the aggregate 
or sum of the parts. This view is to be contrasted with methodological holism 
(or, sometimes, collectivism), which insists that wholes possess “emergent” 
properties that cannot be derived from the properties of constituent parts. 
To the holist, the whole is greater than the sum of its parts. 

This is a familiar story. But, as is often the case with familiar stories, it is 
almost entirely wrong. There may well be some writers who espouse in 
principle this sort of naive methodological individualism. But no one can 
actually put such a view into practice. Consider the case of a neoclassical 
economist analyzing the effect of a tax suddenly placed on a certain com- 
modity. In proper individualist fashion, he or she will instantly begin to 
model the choice problem faced by a representative economic agent, discov- 
ering, as always, that the individual will most likely consume less of the 
commodity than before. But this finding about individual demand tells the 
economist nothing about the whole-total demand-until he or she adds a 
global fact: that total demand is the sum of individual demand. In this (triv- 
ial) case, the whole is just the sum of the parts; but even here, the whole
could not be deduced from the parts, since the relation among them- 
addition-is not logically contained in the individual-choice model itself. 
Moreover, there is nothing sacred about addition, and methodological indi- 
vidualists are quite willing to specify very different sorts of relations among 
the parts. In economics, for example, the aggregate result is very often 
exactly the opposite of what we would have expected from considering 
individual behavior alone.* 

Far from denying the importance of emergent phenomena, the economist 
and philosopher Friedrich A. Hayek, widely (and correctly) cited as an 
archproponent of methodological individualism, reminds us that the entire 
objective of the social sciences is to explain how the behavior of individuals 
leads to orderly patterns and institutions that none had consciously 
planned-to explain, in other words, the emergent results of individual ac- 
tion. [Hayek, 1979, pp. 146-147.] 

In sophisticated discourse, the question of emergent properties is in no 
way an issue between individualist and holist. Both agree  that social phe- 
nomena must often be considered emergent wholes whose behavior cannot 

*In his best-selling introductory textbook, Paul Samuelson (a methodological individualist in 
microeconomics, at least) finds it necessary to warn the student against fallacy-of-composition 
errors as early as page 1 1  of the text, where he presents a long list of such fallacies exploded by 
economic analysis. [Samuelson, 1980.] Indeed, Kenneth Arrow, Samuelson’s fellow Nobel 
Laureate, has written that “the notion that through the workings of an entire system effects may 
be very different from, and even opposed to, intentions is surely the most important intellectual 
contribution that economic thought has made to the general understanding of social processes.” 
(Arrow, 1968, p. 376.) 
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be entirely reduced to the behavior of individ~als.~ The issue is not whether 
we can deduce the nature of the whole from the properties of the parts; the 
issue is whether or not we should consult the parts at all. Holism is not the 
doctrine that we should study emergent phenomena; holism is the doctrine 
that we should somehow study wholes directly without considering the 
workings of the parts in a meaningful way. 

It should be immediately clear that this position does not follow at all 
from a recognition of systemic interactions or emergent phenomena. The 
methodological individualist cannot deduce such phenomena from his or her 
knowledge of the parts; but-what is often overlooked-the holist is in no 
better position to understand such phenomena than is the individualist. The 
problem is simply a lack of knowledge about emergent properties, and call- 
ing oneself a holist does not instantly convey that knowledge. [D. C. Phil- 
lips, 1976, pp. 14-15.] 

More to the point, adopting the holist stance arguably puts us in an epis- 
temological position inferior to that of the individualist. The holist differs 
from the (sophisticated) individualist only in that the former insists on throw- 
ing away useful information. Here lies the real disagreement. The methodo- 
logical individualist holds that the social scientist should always keep in the 
closest contact with the level of the parts (the individuals) and utilize fully 
whatever knowledge of the parts-however incomplete-he or she can 
bring to bear. [Machlup, 1969 and 1979b; Hayek, 1979, esp. chaps. 4, 6. ] 

The best way to appreciate this may be by analogy with literary criticism. 
No one would deny that a work of literature is more than the sum of the 
words and sentences it comprises. Yet the modern critic insists on studying 
these words and sentences carefully. Similarly, methodological individ- 
ualism in social science is nothing more than an insistence on “sticking to 
the text,” whereas holism is a license to engage in that most heinous of “lit- 
crit” solecisms, “reading in.” 

Although naive methodological individualism is probably impossible in 
practice, holism in this sense is not. Social science is rife with holistic 
formulations in which hypostatized concepts like society, the capitalist 
class, or the public interest take on operational significance in and of them- 
selves-formulations in which, as Jacques Barzun said of Marx, the terms of 
reference become “entities stuffed with people but not composed of them.” 
(Barzun, 1958, p. 182.) One result, ironically enough, is that holists are much 
more prone to fallacy-of-composition errors than are methodological indi- 
vidualists. For if we throw away information about the parts, we are inclined 

“The overall order of actions in a group is in two respects more than the totality of regularities 
observable in the actions of the individuals and cannot be wholly reduced to them. It is not so 
only in the trivial sense in which a whole is more than the mere sum of its parts but presupposes 
also that these elements are related to each other in a particular manner. It is more also because 
the existence of those relations which are essential for the existence of the whole cannot be 
accounted for wholly by the interaction of the parts but only in their interaction with an outside 
world both of the individual parts and the whole.” (Hayek, 1967, pp. 70-71.) 
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directly to read in a logic of operation for the whole from some other source; 
and the logic of operation nearest at hand is that of the individual human. 
[Hayek, 1979, p. 101; Langlois, 1981, chap. 3.] The notion that, for example, 
a society permitting economic self-interest is therefore a greedy society is a 
bit of naive individualism characteristic of holists far more than of meth- 
odological individualists. 

In order to make a plausible case for holism, we have to argue that less 
information is somehow better than more. This is no easy task. We might for 
instance invoke the Gestalt and assert that attention to the parts destroys 
our understanding of the whole. But this is to confuse perception and under- 
standing. And, as my analogy with literary criticism was meant to suggest, 
the sophisticated methodological individualist has no compunction against 
stepping back to survey the Gestalt-so long as the (epistemologically more 
accessible) parts are also carefully analyzed. Historically, holists have taken 
a rather different (if not ultimately unrelated) line of attack. Hegel and his 
followers argued that the parts could not be studied in isolation because the 
parts acquire their very nature from their relation to the whole, which nature 
is necessarily altered if the parts are considered apart from that whole. But if 
taken at all seriously, this argument leads to logical absurdity, and it falls 
quickly apart when translated from the quasi-mysticism of essentialist 
rhetoric into a modern nominalist vocabulary. [D. C. Phillips, 1976, pp. 5- 
20.] 

Proponents of general systems theory have unknowingly reinvented and 
invoked this Hegelian formulation in discussing the holism of systems 
theory. [Ibid., esp. pp. 45-50.] But most systems theorists-both mathema- 
ticians and practitioners alike-conceive of systems theory in a way antago- 
nistic to this Hegelian view. They are certainly inclined to recite holist cant 
about “phenomena that depend on the conditions of the environment in 
which they exist, interact with this environment, and thus cannot be prop- 
erly studied in isolation.” (Mortazavian in this volume.) But all they mean 
by this is that the behavior of the whole cannot be understood without 
knowledge of the relations among the parts. The parts are conceived of as 
logically distinct elements of a mathematical set; those elements exist and 
are fully defined independently of any relations that might be specified. A 
system is just the set of parts plus a set of relations among the parts.4 This is 
a formulation that would trouble a serious holist far more than it would a 
methodological individualist. 

The philosopher Mario Bunge has recently transformed this set-theoretic 
definition of a system into a methodological position-systemism-that 
“combines the desirable features of individualism and holism.” (Bunge, 
1979a, p. 13.) To Bunge, a society (which he finds it necessary to call a) may 
be represented as the ordered pair ( S ,  R ) ,  where S is the set of individuals in 

1 4Cf. Mihajlo MesaroviC’s “implicit (syntactical) definition” of a system in MesaroviC [ 1964a, 
p. 7]. 

1 
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the society, and R is the set of relations among them. That systemism does in 
many ways combine the best of both worlds is, I believe, an entirely unob- 
jectionable assertion. What is not true is that systemism somehow repre- 
sents a new methodological alternative: The basic ideas of what Bunge calls 
systemism are essentially identical to what sophisticated methodological 
individualists have believed all a10ng.~ 

It is important to notice that while Bunge’s definition of society qua 
system is consistent with the general mathematical definition of a system 
[MesaroviC, 1964a, p. 7], not all applications of systems theory are in accor- 
dance with the tenets of systemism understood as intelligent methodological 
individualism. The “parts” in Bunge’s formulation are individuals in soci- 
ety, but this is by no means always the case in social science. The elements 
in a typical systems model are aggregate variables of one sort or another- 
dollars, commodity levels, energy use-that are represented as impinging 
directly on one another with no reference whatever to the existence of 
human beings. A good many systems models in the social sciences must, 
therefore, be classified as instances of naive holism; and while such models 
may often prove interesting and illuminating, they cannot-as is often 
claimed-serve as a general foundation for economics and other social sci- 
ences. This is a point to which I will return. 

Perhaps I should apologize for the length of this digression. But, in a 
sense, perhaps this has not been a digression at all. After all, philosophical 
issues lie nearer to the surface in systems theory than they do in most 
intellectual endeavors, even if they are not for that reason more often per- 
ceived. More importantly, though, there is a sense in which it is methodolog- 
ical individualism that lies behind the systems-referential view of knowledge 
and information that I now wish to present. 

SYSTEMS AND THE MEANING OF INFORMATION 

There is a strain of thought on matters informational that I find somewhat 
disturbing. It is what I think of as the “oil-flow’’ model of information, with 
its attendant “oil-tank’’ model of knowledge. According to this (implicit) 
view, information is some sort of undifferentiated fluid that will course 
through the computers and telecommunications devices of the coming age 
much as oil now flows through a network of pipes; and the measure of our 

’Bunge does admit that Hayek and other methodological individualists recognize “the reality of 
social relations” (p. 17), but he continues to paint them as naive individualists. “The individ- 
ualist might not wish to dispute the systemist’s thesis,” says Bunge, “but, if he is consistent, he 
must insist that the structure of R is somehow ‘contained’ in, or deducible from, the properties 
of the individual members of society” (p. 19).  But, as we saw (cf. again footnote 3), Hayek for 
one does not so insist, and I cannot see why he is therefore inconsistent in any way. Bunge is 
simply mistaken in his characterization of the individualist position. [Bunge, 1979a.]
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knowledge in this world will be the amount of “info-fluid” we have managed 
to store up.6 

This model of knowledge and information has some mutually reinforcing 
affinities with information theory in the well-known Shannon-Weaver sense, 
which developed for purposes of communications engineering a quantitative 
measure of something called information. [Shannon and Weaver, 1949.] 
Communications theorists are themselves quick to deny the connection be- 
tween their concept of information and the term’s everyday meaning, distin- 
guishing not only between semantic and nonsemantic information but also 
between the concept of information itself and the notion of amount of infor- 
mation. The logic of systems can help illuminate these distinctions, I be- 
lieve, and may even prove able to offer a conceptual model for information 
and knowledge alternative to the pipe and tank. 

It is tempting to think that the distinction between the communications 
theorist’s information and the more general sense of the term is at base a 
matter of mechanism versus antimechanism (the quantification of informa- 
tion is something appropriate to machines-to computers and switchboards, 
wires and transmitters), and that the very different character of information 
and knowledge in everyday experience arises from the distinctly non- 
mechanistic nature of the human system. There is more than a grain of truth 
in this, and I will later suggest that such a dichotomy between mechanistic 
and nonmechanistic systems is indeed in order. But, in the end, this view 
gives us only part of the picture. To a large extent, I believe, the real issues 
of information and knowledge actually cut across the mechanism/ 
antimechanism d i c h ~ t o m y . ~  

To see what this means, let us look at how even the most mechanistic 
sorts of systems models use a concept of information. 

Systems theorists often distinguish between terminal or causal systems 
and goal-seeking systems. [MesaroviC, 1964a, p. 21; 1962, p. 13.] The former 
react to their environment according, as it were, to the logic of proximate 
cause: The environment affects the system’s inputs, which, in turn, affect 
the behavior of the system in a strictly preprogrammed fashion. By contrast, 
goal-seeking systems operate according to something nearer the final cause. 
In this case, there are “certain invariable aspects of the system which reflect 
its goal” (MesaroviC, 1962, p. 13 ); a teleological subsystem receives the 
system’s inputs and guides its behavior in light of the goal. The distinction 

6This oil-flow model is not without implications. More than one writer has suggested that 
information policy be predicated on the inevitable dependency of future society on this “info- 
substance” just as energy policy is supposed to deal with our dependence on oil. As a conse- 
quence, we should worry about the availability of “info-fluid” to disadvantaged groups like 
Chicanos much as we recently used to fret about the availability of heating oil to poor New 
Englanders. 
7This is precisely the theme pursued by the British physicist Donald MacKay. [MacKay, 1969.] 
The next section of this paper will draw heavily on his ideas. 
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can perhaps best be illustrated using the familiar stimulus/response (S/R) 
model from behaviorist psychology. In the causal approach, we posit some 
direct mapping of the stimulus to the response; each stimulus directly causes 
a particular response. In the goal-seeking approach, we assume a slightly 
more sophisticated version of S/R in which an intermediate processing stage 
comes between stimulus and response.8 The stimulus, of course, is the infor- 
mation with which we are concerned. 

As a kind of objective correlative, we could think of a stimulus as involv- 
ing a (weak) form of energy-a small electric current, a pattern of light, a 
sound wave-which elicits as response the release of another form of energy 
(often stronger or different in character). 

In both causal and goal-seeking models, we can talk about the meaning of 
a piece of information. In the former case, the meaning of a signal is the 
response it elicits. In the latter, response is also the ultimate criterion of 
meaning, even if we cannot necessarily understand the meaning of a signal 
without first knowing the goal that the system is pursuing. 

Now, it is important to notice that not all signals will be equally meaning- 
ful. A signal of the wrong form-the wrong voltage, frequency, or code, for 
example-cannot be understood by the system. At the same time, not all 
meaningful signals will have the same meaning. A small voltage may elicit a 
smaller response than-and thus have a meaning different from-that of a 
larger voltage. A message coded ABCD may have implications for achieving 
a system’s goal that are very different from those of a message coded DCBA. 
And this provides a clue to the distinction between semantic information and 
the nonsemantic information of communications theory. The latter is con- 
cerned only with the extent to which a message is within the set of meaning- 
ful messages; it is not at all concerned with the message’s implications for 
the system. For example, the messages ABCD and DCBA-which contain 
the same characters-would typically have identical information content 
in the communications-theory sense, even if they had very different mean- 
ings from the system’s point of view. 

To illustrate this, let me draw on an example from the (normative) theory 
of economic decision-making. Here we are dealing with a goal-directed sys- 
tem, one in which the “teleological subsystem” takes the form of a decision- 
maker who maximizes profit (or, as we shall wish to introduce stochastic 
elements, who maximizes so-called expected profit, which is, in effect, profit 
weighted by probability). 

Let us suppose that the decisionmaker is a farmer and that he has certain 
“decision variables” under his control, for example, the number of acres of 
wheat he can choose to plant. There are also variables-say, the weather- 
that are not within his grasp. The profit experienced by the decisionmaker 
depends on both the weather and the number of acres planted. If the de- 

‘MesaroviC holds-correctly, I believe-that any mathematical system can be represented 
either way. A causal system can be modeled as if it were pursuing a goal; and a goal-directed 
system can be reduced to a direct mapping of inputs to outputs. [MesaroviC, 1964a,   p. 22.] 
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cisionmaker knows the weather-if he knows how much rainfall there will 
be-he can easily determine the acreage appropriate for maximum profit. If 
he is uncertain about the level of rainfall, he can articulate a probability 
distribution for that variable, which allows him to select the acreage that 
maximizes expected profit. But the decisionmaker who can anticipate the 
level of rainfall perfectly will very likely elect to plant an amount of acreage 
different from that selected by the farmer who is uncertain about the 
weather; more to the point, the better informed decisionmaker will realize a 
higher profit than his ill-informed counterpart. 

If the decisionmaker who is uncertain can obtain some kind of informa- 
tion about the weather-divine revelation, perhaps, or the weather bureau’s 
probability distribution for rainfall-then he can improve his acreage deci- 
sion. But if this information is costly, the decision whether to acquire it can 
be represented as yet another decision-system of the same sort as the origi- 
nal acreage decision. In general, our profit-maximizing farmer should wish 
to acquire the information if its expected value exceeds its cost. [See, for 
example, Howard, 1966.] 

This expected value of information is the interesting quantity. In order to 
examine it more closely, let us simplify our example even further. Suppose 
there are only two possibilities, heavy rain and light rain. The farmer must 
optimize his acreage planted in light of whatever information he might have 
about which of these two possibilities will occur; for example, he might 
consider the amount of rain experienced in past years or various freely 
available predictions by the Weather Bureau or the Department of Agricul- 
ture. On the basis of this imperfect information, the farmer estimates a 
probability of, say, 0.7 for heavy rain and 0.3 for light rain. Now, suppose 
that a fully reliable clairvoyant stands willing (for a stiff fee) to disclose 
which of the two alternatives nature actually has in store. How much is this 
revelation worth to our profit-maximizing decisionmaker? We have to con- 
sider how the new information would affect the farmer’s acreage choice and, 
thus, his profits. If the clairvoyant says “heavy rain,” he can optimize the 
acreage in a way that increases profits over the expected level. If the clair- 
voyant sends the message “light rain,” he can also optimize acreage-in a 
different direction-to increase profit over the expected profit. In deciding 
whether to buy the clairvoyant’s information, the farmer must decide if the 
increase in profit will be enough to justify the clairvoyant’s fee-and he must 
decide before he knows which message the clairvoyant will send . So, the 
decision whether or not to buy the information must be based on the farm- 
er’s prior probability assessment of what the clairvoyant will say. Since the 
clairvoyant is merely revealing what nature will do, the farmer’s weather 
forecast or other prior information is exactly as relevant to predicting the 
clairvoyant’s message as to predicting nature’s response-since the former 
is nothing but the latter moved forward in time. 

Thus, the farmer must use his original probability assessment (0.7 chance 
of heavy rain; 0.3 chance light rain) in deciding whether to buy the informa- 
tion. And the expected value of perfect information is thus the sum of two 
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magnitudes: the first is the increase in profits from adjusting to heavy rain if 
there will, in fact, be heavy rain, multiplied by 0.7, the probability that there 
will be (and, therefore, that the clairvoyant will say) heavy rain; the second 
is the increase in profits from optimizing for light rain given that there will, in 
fact, be light rain, times the probability that there will be (and, therefore, 
that the clairvoyant will say) light rain.’ In other words, the expected value 
of perfect information (EVPI) is the sum of the value to the system of a set of 
possible messages weighted by the probability of occurrence of each mes- 
sage. 

By contrast, the information measure of communications theory is oblivi- 
ous to the value a message holds for the system that receives it: In analogy 
with the entropy measure of thermodynamics, the information content of the 
message heavy rain is, to the communications theorist, proportional only to 
the logarithm of the probability of that message being received.” Although 
the value measure and the entropy measure can move in the same direction, 
there is no general reason why this should be so.’’ 

’The length of this sentence suggests that there are times when mathematics has its expository 
(or at least space-saving) advantages. Let rI(alw) be the (realized) profit from planting a acres 
under weather conditions w. The farmer’s original problem is 

max [ p n ( a l w  = H )  + (1 - p)n(a lw  = L ) ] ,  

where H indicates heavy rain, L light rain, andp is the farmer’s prior probability assessment on 
heavy rain. (The probability of light rain has to be (1 - p) since there are only two possibilities.) 
Suppose that a* is the value of a-the number of acres-that maximizes the quantity in 
brackets. Then, 

EVPI = p[n(a&, lH)  - n(a*IH)I + (1 - p)[n(aZIL)  - n(a*lL)I, 

where p is the farmer’s assessed probability that the clairvoyant will call for heavy rain (which is 
necessarily identical to his original assessment of the probability of heavy rain), a& is the 
optimal choice of acreage under conditions of heavy rain, and a: is the optimal acreage under 
light rain conditions. 
“In the notation of footnote 9, the (nonsemantic) information content of the message heavy 
rain is proportional to - logzp. The information content or entropy of the light-raidheavy-rain 
information system is the information content of each possible message weighted by its proba- 
bility, 

H = -[Plogzp + (1 - p)logz(l - p)l. 
“In our now familiar example, it happens that the two measures are closely related: Informa- 
tion content is high when value is high and vice versa. (The reason is that a high-entropy [low 
“info-content”] message is one with a high probability. If a farmer anticipated heavy rain with a 
high probability, then a* is likely to be already near a&, and [II(a&IH) - II(a*IH)] is low. 
Similarly, the more unexpected message would have both a higher information content and a 
higher value, since a* would be less close to a:. I believe this monotonicity can be shown 
rigorously to hold if the profit function is concave.) But such a connection is merely fortuitous. 
Consider an industrial research laboratory, for example, in which one experiment has a very 
high “info-content’’ (e.g., the experiment has a 50-50 chance of resulting in the message suc- 
cess) but low profit implications for the company, while a second experiment has a low “info- 
content” (e.g., a 90 per cent chance of success) but big profit implications. The research 
manager who used entropy as a decision-making criterion would be sorely misguided. 
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MEANING AND STRUCTURE 

Stimulus/response systems-what we could call cybernetic systems in a 
broad senseI2-are mechanistic systems in that action alone matters. It is 
not so much that action-response-has taken the place of meaning; rather, 
meaning itself is defined solely in terms of the action released or controlled 
by the action in que~t ion. ’~  In the case of our agricultural decision-system, 
for example, the meaning of a message about the weather is the acreage the 
decisionmaker chooses to plant. Now, because this is a goal-directed sys- 
tem, we can interpret the relation between message and action in light of the 
goal, and since the goal is a simple quantitative one, we can even measure 
the value of the message for the goal’s ahievement.’~ Nonetheless, all 
meaning is ultimately reflected in the system’s behavior, in its output. 

Yet, if we look at the question of meaning in a slightly different way, we 
may be able to generalize beyond simple stimulus/response systems. An- 
other way to say that the meaning of a message within a cybernetic system 
arises from the action that message brings about is to say that the meaning is 
defined by the system itself. What makes the message rain will be heavy 
comprehensible to our decision-system-and the message tea tonight at 
eight meaningless to it - is that, by virtue in this case of its very structure, 
the system is ready to respond to the one and not the other. Furthermore, 
notions of information and meaning seem as applicable to complex and 
arguably nonmechanistic systems (such as brains) as to simple cybernetic 
systems. 

In general, then, we might follow Donald MacKay in speaking of a sys- 
tem’s structure as defining “conditional states of readiness.” It is the overall 
configuration-not  any particular response in isolation-that determines the 
meaning of a message. 

It isn’t until we consider the range of other states of readiness, that might have 
been considered but weren’t, that the notion of meaning comes into its own. A 

‘*By a cybernetic system in a broad sense, I mean any system that is concerned with informa- 
tion and control. In  a narrower sense, cybernetics is concerned specifically with feedback 
systems, where a monitoring signal is sent from output back to input in order to control that 
output and bring the system into an equilibrium condition called “homeostasis.” The locus 
classicus here is Norbert Wiener’s Cybernetics. [Wiener, 1948 and 1961 .] 
I3  “Depuis longtemps, le pragmatisme et le behaviourisme ont appris aux psychologues B mettre 
I’accent sur l’action plutBt que sur la conscience. La cybernktique adopte rigoureusement ce 
point de vue: le sens, la conscience dans l’information, n’a rien d’essentiel; ou plus exactement, 
le sens d’une information n’est rien d’autre que I’ensemble des actions qu’elle declenche et 
contrble.” (Ruyer, 1954.) 
I4Here, I think, we need to make the distinction between the (1) meaning, (2) meaningfulness, 
and (3) value of a message. A message to the decision maker reading keep doing what you’re  
already doing is fully meaningful even though it does not entail a different action or necessarily 
result in a level of goal achievement higher than would have occurred in its absence. (Of course, 
a strict behaviorist would be unable to distinguish a meaningless message from a meaningful 
message to maintain the status quo, but this is not a problem in a goal-directed model.) 
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change in meaning implies a different selection from the range of states of 
readiness. A meaningless message is one that makes no selection from the 
range. An ambiguous message is one that could make more than one selection. 
(MacKay, 1969, p. 24; emphasis original.) 

MacKay offers the metaphor of a railroad switching yard in which the 
configuration of tracks and switches stands ready to direct the trains passing 
through it. By sending the right electronic signal-or, in older yards, by 
inserting the correct key in a switch box-we can rearrange the configura- 
tion of tracks. The meaningfulness of a message thus depends on its form- 
the shape of the key. And that meaning consists of the change the message 
effects in the arrangement of the yard, the selection it makes from the set of 
all possible configurations. (Notice that this example is somewhat less be- 
havioristic than that of the decision-making farmer, in that the reception of a 
meaningful message does not, in this case, imply action. Although the selec- 
tion operation implies potential action-the shunting of a train in one direc- 
tion instead of another-it is meaningful even in the absence of action; it is a 
property of the system itself.) This view of information and meaning seems 
to me exceedingly suggestive and points to some implications we can gener- 
alize without, I think, much embarrassment. 

The first implication is that meaning must always be defined in terms of 
the system-or person-receiving the signal. Meaninglessness, MacKay 
notes, “is a relative concept, and a precise definition of meaning would be 
useless unless it automatically reminded us of this.” (MacKay, 1969, p. 86.) 
The meaning of a message to a cybernetic system-a robot, a spacecraft, an 
economic decision-system-depends on the system’s structure and the mes- 
sage’s form; and, while the human system is of a very different order, it 
remains that meaning cannot be defined independent of that system-the 
apprehending mind. “Meaning is always meaning to someone.” (MacKay, 
1969, p. 36; emphasis ~riginal .)’~ This may sound reasonable, but it is not an 
entirely noncontroversial view, for it stands in opposition to numerous at- 
tempts to define meaning entirely in extrapersonal empirical and logical 
terms. l6  

A correlative implication is that-perhaps surprisingly-this view tends 
to blur rather than sharpen the distinction between semantic and nonseman- 
tic information. If we speak of information as involving a selection operation 
on the states of readiness of a system, then we can speak of the selective 
information-content of a signal as somehow measuring the extent or mag- 

15And here, in an important sense, is where methodological individualism comes back into the 
picture. 
I6This is true of Wittgenstein in the Tractatus logico-philosophicus and also of the later logical 
empiricists. [Wittgenstein, 1922; Carnap, 1950; Bar-Hillel and Carnap, 1953b; Bar-Hillel, 1964.] 
I should also note that it was this attempt to eliminate the personal and (contra Mortazavian in 
this volume) not the use of subjective probability that was the ultimate problem with the 
positivist approach. It was a problem of too little subjectivism, not too much. 



SYSTEMS THEORY, KNOWLEDGE, AND THE SOCIAL SCIENCES 593 

nitude of the selection operation performed. The expected value of informa- 
tion developed in the agricultural example is precisely this sort of measure. 
How does it differ from the entropy measure of communications theory? 

The communications engineer measures the selective information-content of 
. . . signals, not in terms of the selective operation performed by the symbol on 
the ensemble of states of readiness of the . . . receiver, but in terms of the 
selective operation performed by the signal on the ensemble of signals.        The 
symbols are represented in this ensemble in the proportions in which they 
normally occur, the most frequently used occupying the largest space and 
being most easily selected. (MacKay, 1969, p. 75; emphasis added.) 

Thus, the entropy measure of communication theory is not so much a mea- 
sure of nonsemantic information content as it is a measure of the semantic 
(i.e., selective) information content of operations on one particular system, 
albeit a system different from the one actually receiving the signal; it is a 
value-of-information measure for a system in which value and probability 
(or, rather, improbability) are identical. 

Another, more significant, aspect of this view-which we might call the 
system-referential view of information-is, it seems to me, that it argues 
strongly against the oil-flow model. Information is not homogeneous; mean- 
ing is a matter of form not of amount; and the value or significance of a 
message depends as much on the preexisting form of the receiver as on the 
message itself. More to the point, this view suggests that information is 
stored as knowledge in a system not as oil is stored in a tank, but by virtue of 
the change that information makes in the very organization of the system 
itself. In a fundamental sense, knowledge and organization are identical. 

I will postpone some of the more resonant implications of this last, rather 
provocative, statement. For the moment, let me try to illustrate what such a 
connection between knowledge and organization might mean. 

We are all accustomed to thinking of memory as a function that takes 
place in some isolated part of a system-a computer memory bank or a 
human brain, for instance. But information is not stored in those places like 
relics in an attic; information submitted to a system's memory changes the 
organization of that subsystem: The arrangement of magnetic elements in a 

17We can see this clearly by comparing the equations in footnotes 9 and 10. For the value-of- 
information measure, we had 

EVPI = pArI(w = H) + (1 - p)AIl(w = L), 

where A n  is shorthand for the expression in brackets in footnote 9. For the entropy measure, 
we had 

H = -[Plog,P + (1 - p)logAl - P)I. 

In the first case, the probabilities weight terms that measure the effect of a message on the 
system; in the second case, the probabilities weight terms referring only to the selection of a 
message from the set of messages. 
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core memory, for example, is changed when data are stored. Furthermore, 
the memory bank is not the only locus of memory in the system. In an 
important sense, the entire organization of the system-hardware plus soft- 
ware, mind and body-contains functional knowledge to guide behavior. I 
do not think this is a new or particularly controversial way of putting things. 

At the risk of a charge of idiosyncrasy, let me go beyond this to suggest a 
distinction between structural information and parametric information. The 
former is information that operates on-that changes-the basic structure of 
the system; the latter is information that operates on parameters of the 
system-on elements that adjust or calibrate the workings of the system 
within the dictates of, but without altering, its underlying structure. 

I apologize if this all sounds a little vague. But the nature of form and 
structure is a problem that has animated philosophy since the Presocratics, 
and I make no pretense of trying to solve it. At an intuitive level, the notion 
of a system’s structure is fairly clear: A system has various fixed (or rela- 
tively slow changing) attributes that define its form, that set the scope, 
ground rules, and boundary conditions for the system’s more variable as- 
pects. (This may have a physical correlative in hardware as distinct from 
software, but it need not; even within the software of a computer program, 
the mental representations of a human mind, or indeed any system in the 
abstract, we can speak of an underlying structure.) If we restrict ourselves to 
the mathematical realm, we can make the notions of structural and 
parametric information more precise, if in the end perhaps no less 
metaphoric. l8 

The agricultural decision-system again provides a clear example. Here, 
the model’s structure lies in the form of the profit function; that function 
specifies a parameter, weather conditions, that can be altered by reception 
of an appropriate message. Our decisionmaker is able to obtain only 
parametric information and thus to gain only parametric knowledge from a 
signal. As the problem is formulated, no signal can change his profit function 
or any of the basic givens of the situation he faces. 

In the modern mathematical “economics of information” [Hirshleifer and 
Riley, 19791, the focus is exclusively on parametric information of this sort. 
For a long time, the mainstream of economics had concentrated on “perfect- 
information” models, where the decisionmakers were portrayed as having 
full knowledge of all aspects of the decision-situations they faced. In newer 

‘8MesaroviC offers a definition of systems structure that, as best I understand it, is consistent 
with what I have in mind. The organization of a system consists in the systems relation that 
maps one set of parts into another. This relation R “can be considered as defined by an abstract 
relation and the specific values of the unspecified constituents, the so-called relational con- 
stituents; R = {T ,  c}, where T = systems structure, xi = set of relational constituents.” 
(MesaroviC, 1964a, p. 10.) As MesaroviC further suggests (in Equation 9), these relational 
constituents can take the form of parameters of the system. Thus, my distinction between 
structural and parametric seems in accord with his view. Also see Mortazavian’s paper in this 
volume. 
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models, the decisionmakers retain full structural knowledge of the problems 
they face; but now there are certain key parameters-such as weather con- 
ditions-obscured from their vision. As we might guess, the myopic de- 
cisionmakers invariably choose less efficiently than their better informed 
counterparts, a situation that has proven a boon to the legions of modern 
economists who take pleasure in identifying causes of what they term mar- 
ket failure much as nineteenth-century paleontologists delighted in unearth- 
ing new species in fossil. Meanwhile, the importance of imperfect structural 
knowledge-with its very different economic implications-has escaped 
widespread attention. 

KNOWLEDGE, STRUCTURE, AND ECONOMICS 

It is fair to conclude, I think, that systems theory and the theory of knowl- 
edge and information (broadly defined) must ultimately be related in a funda- 
mental way. Both are concerned with form and organization. And it is little 
wonder that communications theory, with its entropylike measure of infor- 
mation content, has held a singular fascination for systems theorists. An 
organized entity is a nonrandom entity, one whose organization is unex- 
pected in some sense, and it is unexpectedness-negative entropy-that 
communications theory measures. 

Although, as we saw, the derivation of a scalar measure of organization is 
possible only in the very special case with which communications theory is 
concerned, it nonetheless remains that the knowledge content of a system 
is closely bound up with that system’s organization-with its structure. 

We have already seen two logics of organization identified by systems 
theorists: causal systems and goal-directed systems. I would now like to 
suggest that these two are not the whole story. 

A causal system is an instance of what we might call a “mechanical” 
structure. The movements of the parts are causally related to one another 
within the dictates of a fixed structure. The centuries-old example is the 
mechanical clockwork. Each gear moves by virtue of the force impressed on 
it by a previous gear; and each carries out its function within the pattern 
ordained by the designer. Once cut loose from its creator, the mechanical 
system cannot increase its level of organization. Indeed, any change in 
structure (other than those effected by the ministrations of the designer) 
must lower the level of system organization, thus increasing entropy in some 
sense. 

Information and control are closely related concepts in systems theory. In 
a strictly causal system, the only way to change behavior is by reprogram- 
ming the system; often, this can be accomplished by adjusting various con- 
trol variables to modify the system’s structure-much as we manipulate the 
steering wheel and foot pedals to alter the behavior of an automobile. This is 
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called open-loop control, in that the controlling information comes entirely 
from outside the boundaries of the system. 

The mechanical-control model has not been absent from economics. The 
various models of stabilization policy, now happily somewhat out of fashion, 
have long portrayed the economy as a system of aggregate variables (na- 
tional income, consumption, investment, etc.), which the government- 
viewed as an entirely exogenous entity-could regulate by suitable manipu- 
lation of its control variables, for example, government expenditures. 

As we have seen, goal-directed systems (or cybernetic systems, in the 
narrow sense of the term) work somewhat differently. These systems also 
have a fixed structure, but now there are certain manipulable variables that 
can be altered by information generated within the system itself. The system 
possesses a goal; and, by means of an information-feedback loop, it is able to 
compare its situation with that goal and make appropriate adjustments to- 
ward it. Among control theorists, this is called closed-loop contro1.l’ 

I have already suggested that there is a definite congruence between 
causal systems and goal-directed ones, and while perhaps less horological 
than the former, the latter are not necessarily less mechanical in the 
everyday sense of the term. (An ordinary mechanical thermostat is a cyber- 
netic device.) But there remains a tendency to see cybernetic systems as 
somehow more organic than causal systems. This is, I believe, largely be- 
cause many bodily systems also operate in a cybernetic fashion.*’ 

Rather than settling at a mechanical equilibrium point-like a clock run- 
ning down or gas molecules coming to terms with the surrounding tempera- 
ture-a cybernetic system achieves a condition of dynamic balance called 
homeostasis. Like a mechanical system, though, a cybernetic system in 
homeostasis is struggling to maintain a fixed level of organization. Any 
change in the system’s state is, therefore, potentially dangerous, and pro- 
longed changes represent worrisome imbalances that threaten to destroy the 
system. Indeed, many who take cybernetics seriously as a general meta- 
physics of order soon develop an attitude I tend to call thermodynamic 
Manichaeism-the implicit belief that every trend, every economic or social 

I9I should also mention here the branch of systems theory called optimal-control theory. The 
optimal-control theorist seeks the best way to control a system in order to achieve some goal. 
For example, we might wish to calculate that trajectory of a rocket between two points that 
minimizes flight time, fuel consumption, or some other objective. (And, as a matter of fact, it 
was precisely such aerospace problems that formed much of the early subject matter of this 
theory.) Mathematically, the optimal path is found using the calculus of variations (and some- 
thing called the Pontryagin Maximum Principle) or the (closely related) technique of dynamic 
programming. Once found, this optimal trajectory can be imposed directly by open-loop control 
or implemented through a feedback system to create goal direction and closed-loop control. 
[See generally Bryson and Ho, 1968.] Optimal-control theory has found its way into economics, 
especially in economic-growth models (not unrelated to the simple stabilization policy models 
already mentioned) [Burmeister and Dobell, 1970, chapter 11] and in the theory of resource 
extraction [Sweeney, 1977]. See also Kamien and Schwartz [1981]] and Aoki [1976]. 
*‘Human biology was, in fact, an early inspiration for cybernetics. [Cannon, 1939.] 



SYSTEMS THEORY, KNOWLEDGE, AND THE SOCIAL SCIENCES 597 

innovation is a potential victory for the forces of entropy and disorder over 
the forces of homeostasis. [Langlois, 1981, chap. 2, esp. pp. 73-82.] And it is 
thus probably no surprise that systems theorists [MesaroviC and Pestel, 
1974] and cybernetically oriented biologists [Hardin, 1977] are prominent 
among the new Malthusians who see dangerous social and ecological imbal- 
ances in the world’s future. 

In economics, there has been some effort afoot, especially by so-called 
post-Keynesians, to close the loop on the macroaggregate models of eco- 
nomic stabilization. These economists, as one observer correctly notes, 
“. . . might wish to replace the Newtonian-clockwork model by something 
they call a ‘cybernetic’ model, which may be an improvement (if it could 
ever be devised), but a shift from mechanical statics to sophisticated 
mechanical dynamics is no radical conceptual revolution.” (Kristol, 1981,  p. 
212.) 

What is the alternative to the mechanical causal and cybernetic models? 
The answer is best found by leaving the level of aggregate dynamics and 
returning to consideration of the parts-the human agents. A human being- 
at least in part or at times-is a goal-directed system. This is the basis of the 
ideal type-homo economicus-that underlies much of mainstream eco- 
nomic modeling. Yet everyone this side of B. F. Skinner recognizes that the 
flesh-and-blood human being does not operate with the stimulus-response 
compulsiveness of a simple goal-directed cybernetic system. There is some- 
thing more, or perhaps different, at work. 

One major school of thought holds, at least implicitly, that differences 
between the human mind and a mechanical cybernetic system are ones of 
degree rather than of kind. The mind is an immensely complex thing, and if 
we could only construct a cybernetic system-that is to say, a digital com- 
puter, the apotheosis of the mechanical cybernetic system-with sufficient 
complexity, we could largely replicate much of what the mind can do. Ad- 
herents to this view take heart from the old saying attributed to Marx that 
quantitative change allowed to go on long enough inevitably becomes qual- 
itative change. 

There are dissenters from this viewpoint, of course. Most notable among 
these is Hubert Dreyfus, whose analysis continues to stir controversy in the 
field of artificial intelligence. [Dreyfus, 1979.] In a significant sense, Drey- 
fus’s thesis rests on the system-referential view of knowledge already ar- 
ticulated. Human knowledge, he argues, is very much tied to the biologically 
and culturally evolved structure of the human organism. What is meaningful 
to a human is meaningful only in reference to that structure, and meaning 
cannot be reduced to the system of explicit, extrapersonal, context-free 
statements that a computer, by virtue of its own structure, must employ. It is 
for this reason, Dreyfus argues, that no artificial intelligence program has yet 
been (or could be) written in which the important functions of discriminating 
meaning and significance are not preprogrammed by the human designer. 

However this be resolved, it is clear that the human mind operates differ- 
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ently from simple cybernetic systems. The human mind is an example of a 
system in which information can result not merely in parametric but in 
structural knowledge. Unlike our simple cybernetic decisionmaker, the 
flesh-and-blood human is able, both spontaneously and as the result of sig- 
nals, to change the problem formulation, rearrange the structure of his or her 
expectations, to alter his or her states of readiness. In Kantian terms, we 
might say that the human system is able to “evolve categories of description 
beyond those built into its design . . . .” (MacKay, 1969, p. 55.) 

The lexicon of systems theory has a couple of words that sound as if they 
were intended to articulate a conception of the metamechanistic or the 
metacybernetic; these are open system and self-organizing system. The first 
is of thermodynamic origin and refers to a system that is not isolated and 
thus is able to exchange matter or information with an outside environment. 
A self-organizing system-by one definition, at least [Mesarovic, 1964a,  pp. 
11-131-is a system that can change its structure in response to the environ- 
ment.21 Clearly, a human system is both open and self-organizing. But I am 
not entirely persuaded that these terms by themselves fully capture our 
intuitive sense of the distinction between a mechanistic and nonmechanistic 
(or metamechanistic) system. Openness and self-organization are certainly 
necessary but perhaps not sufficient conditions to qualify a system for the 
latter category. Indeed, these distinctions do not seem to rule out various 
sorts of robots or things like “perceptrons” and “heuristic programs.” 
[Ibid.]22 Perhaps the best distinction, despite its greater generality, is that 
between a “morphostatic” and a “morphogenetic” system. [Buckley, 1967, 

Models in the mainstream of economics-including, as I have suggested, 
those in the mathematical economics of information-portray the economic 
agent as a passive cybernetic reactor, a morphostatic system that responds 
to changes in data according to the logic of the economic problem pro- 
grammed into it by the economist. As Fritz Machlup has long and patiently 
explained, this approach is not a statement about human psychology but a 
perfectly reasonable and justifiable technique of analysis-particularly for 
the sorts of economic problems to which the basic tools of partial- 
equilibrium comparative statics are normally applied. [Machlup, 1967.] But 
even granting all this, there remains a wide range of problems that demand a 
more active, morphogenetic ideal-type of the economic agent-one who can 
acquire structural knowledge and change the economic problem he or she 
faces .23 

pp. 58-59.] 

*lLudwig von Bertalanffy’s definition of this term seems a bit different and comes nearer to the 
distinction I am looking for. He describes a self-organizing system as one capable of “evolving 
from a less to a more differentiated state.” (Bertalanffy, 1968, p. 68.) 
22The reason for this, I believe, is that Mesarovic is willing to classify systems as self-organizing 
if they change their structure within the dictates of a fixed higher level structure; that is, if they 
“change their structure by using a relation from the set nR.” (Mesarovic, 1964a,  p. 11.) 
23M~rphogenetic man has not been entirely neglected in economics. Under the title of entrepre- 
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If economic agents are cybernetic reactors, they can adjust the economic 
mechanism in light of changed circumstances, but they cannot thereby in- 
crease the organization (decrease the entropy) of that mechanism. And any 
imperfection in the agent’s knowledge (that is, any lack of correspondence 
between the economic problem perceived by the agents and the “true” 
economic problem) can lead to a bad equilibrium, a market failure. But if 
economic agents can alter the problem they face, if they can bring new 
structural knowledge into the system, then elaboration of, and increased 
differentiation in, the economic system becomes possible. Far from causing 
disorder or chaos, apparent departures from homeostatic equilibrium can 
actually result in an increase in system organization and a decrease in en- 
tropy. This is the phenomenon of “spontaneous order” [Hayek, 1967, p. 771 
or, in technical jargon, “deviation-amplifying mutual causal effects.” 
[Maruyama, 1963.]24 

Recognizing the existence and importance of morphogenetic processes 
has a number of far-reaching implications for both systems theory and eco- 
nomics, but this is not the place to explore them, I am afraid. Instead, let me 
close with some brief observations on relations between these two disci- 
plines. 

Systems theorists of my acquaintance are sometimes inclined to the opin- 
ion that economics lacks an adequate systems perspective and its scientific 
development would be rapidly enhanced by a complete subsumption of that 
discipline into systems theory. This viewpoint is not without its ironies. In 
an important sense, it was economists who were the first systems theorists. 
Moreover, the founders of economics were concerned with a fully mor- 
phogenetic version of systems theory. [Hayek, 1967.]   Adam Smith’s concep- 
tion of economic growth based on the increasing division of labor is very 
much a theory about the evolution of economic structure from a less to a 
more differentiated state. [A. Smith, 1776 and 1936.] And, indeed, it is now 
widely recognized that the theory of evolution, known to us through the 
biological theory of Darwin, was articulated at least a century earlier in the 
social sciences.25 

Of course, modern systems theory is also concerned with questions of 
morphogenesis, but mathematical systems theory-in the guise of non- 
equilibrium thermodynamics [Prigogine, 197 1] and topology [Thom, 

neur, he has been studied by Joseph Schumpeter and more recently, Israel Kirzner, among 
others. [Schumpeter, 1934; Kirzner, 1973.1 
24Another name for this class of phenomena is autopoiesis, an area that is apparently attracting 
increasing interest among systems theorists. For a bibliographic introduction, see Zeleny 
[1981]. 
25David Hume, who numbered economics and social thought in general among his philosophical 
interests, adumbrated a genuinely Darwinian view of evolution in his Dialogues Concerning 
Natural Religion, first published in 1779  but written in 1759, a hundred years before The Origin 
o fSpec ies .  [Hume, 1961, especially p. 478.] 
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1975]26-is just beginning to grapple with these problems. In practice, the 
systems theorists who wish to bring economics under their wing are the 
control theorists and cyberneticians (in the narrow sense), the builders of 
naive-holist macromodels of the economy. In this sense, then, a subsump- 
tion of economics into systems theory is a step backwards-a step back in 
the direction of the French physiocrats, whose ideas Adam Smith tran- 
scended in founding the discipline of economics.27 The problem is not a lack 
of high-powered systems mathematics in economics: Modern economists 
have not been slow in the least to adopt whatever new mathematical tech- 
niques emerge from systems theory. Indeed, if there is any need to make 
economics more system-theoretical, it is a need not to give it over to the 
cybernetic modelers but to return the discipline to the more sophisticated 
version of systems thought on which it was founded. 

26This work by Thom, which presents the notion of catastrophe theory, has attracted a large 
following in a number of disciplines and remains something of a cause celtbre in mathematical 
systems theory. It promises mathematical interpretations of some of the most ancient and 
vexing problems of philosophy-the nature and origin of form and structure-and the text 
alternates enticing intimations of the profound with an utterly impenetrable formalism, thereby 
applying a time-tested formula for attracting a cult following. 
"On the similarities between physiocrats and certain modern systems models of the economy, 
see Almarin Phillips [1955]. 


